inquiry
Deixe um recado
Se você estiver interessado em nossos produtos e quiser saber mais detalhes, deixe uma mensagem aqui e responderemos o mais breve possível.
Enviar
Tecnologia de proteção de soldagem Bengbu Longkai Co., Ltd.
Lar

blog

blog

  • Experience Laser Safety with ADF Laser Welding Helmet and PAPR
    Experience Laser Safety with  ADF Laser Welding Helmet and PAPR
    Sep 08, 2025
    When it comes to laser - related work, safety is always the top priority. Today, I want to share with you the NEW AIR laser protective helmet (automatic dimming version ADF) and the PAPR (Powered Air - Purifying Respirator) that works in tandem with it, which are excellent choices for ensuring safety in laser operations.   The ADF helmet is specifically designed for laser safety protection. Its main protection wavelength range is 950 - 1100nm, perfectly matching the 950 - 1100nm fiber laser commonly used in many laser applications. Made of PP and PC materials, it is not only durable but also provides reliable protection. The automatic dimming feature is a highlight. In the dark state, it can adjust to DIN4/5 - 8/9 - 13, and the PC absorbing laser window offers a light density of OD8+ for the 950 - 1100nm range, effectively shielding the eyes and face from harmful laser radiation during laser handheld welding.   Now, let's talk about PAPR. A PAPR is a powered air - purifying respirator that supplies filtered air to the wearer. When used together with the ADF helmet, it forms a comprehensive protection system. While the helmet protects the eyes and face from laser damage, the PAPR ensures that the respiratory system is safeguarded from any fumes, particles, or harmful gases that may be generated during laser operations. This combination is especially crucial in environments where there are potential respiratory hazards along with laser risks.   In summary, the ADF laser protective helmet, with its precise laser protection parameters, and the powered air purifying respirator helmet, which addresses respiratory safety, together create a safer working environment for those engaged in laser - related tasks. Whether you are a professional in laser manufacturing or research, this safety combination is definitely worth considering.If you want know more, please click www.newairsafety.com.
    LEIA MAIS
  • Capacete de soldagem a laser e respirador purificador de ar motorizado: proteção sinérgica para soldadores
    Capacete de soldagem a laser e respirador purificador de ar motorizado: proteção sinérgica para soldadores
    Sep 04, 2025
    A soldagem a laser revolucionou a fabricação de precisão, mas também traz desafios de segurança únicos — desde a radiação laser intensa até os vapores metálicos. Para lidar com esses riscos, equipamentos de proteção especializados são essenciais, e hoje exploraremos como um capacete de soldagem a laser funciona em conjunto com um Respirador purificador de ar motorizado para manter os soldadores seguros.A proteção para os olhos e o rosto: capacete de soldagem a laser NEW AIRTomemos como exemplo o capacete de soldagem a laser NEW AIR. Suas especificações técnicas revelam uma defesa focada contra a radiação laser de fibra de 950–1100 nm — ideal para máquinas de soldagem a laser portáteis. O capacete possui uma máscara de nylon durável e uma janela de PC (policarbonato) com absorção de laser. Esta janela possui uma densidade óptica (DO) superior a 8 na faixa de 950–1100 nm, bloqueando quase toda a energia laser nociva. Com uma classificação de tonalidade DIN4, ele também protege contra ofuscamento e luz de arco secundário, garantindo visibilidade nítida e protegendo os olhos e a pele do rosto de queimaduras ou danos causados ​​pela radiação a longo prazo.Respiração fácil com um respirador purificador de ar motorizadoEnquanto o capacete de soldagem a laser protege os olhos e o rosto, um respirador papr aborda outra ameaça crítica: perigos aéreos. A soldagem a laser libera partículas finas de metal, ozônio e óxidos de nitrogênio — todos os quais podem irritar ou danificar o sistema respiratório. Um PAPR usa um ventilador alimentado por bateria para aspirar o ar através de filtros de alta eficiência e, em seguida, fornece ar limpo e pressurizado para a zona de respiração do usuário (geralmente por meio de um capuz ou máscara facial). Esse fluxo de ar ativo não apenas filtra os contaminantes, mas também reduz a resistência respiratória, tornando as longas sessões de soldagem mais confortáveis.Sinergia: Capacete e PAPR como uma Defesa UnificadaA relação entre um capacete de soldagem a laser e um respirador de ar motorizado está enraizado em proteção abrangenteO capacete impede que a luz e os respingos perigosos atinjam os olhos e o rosto, enquanto o PAPR garante que cada respiração esteja livre de vapores tóxicos. Em ambientes como espaços confinados ou operações de soldagem a laser de alto volume (onde as concentrações de vapores aumentam e a radiação permanece intensa), o uso de ambas as ferramentas não é apenas recomendado, mas também uma necessidade para a saúde ocupacional a longo prazo. Juntas, elas criam uma "barreira dupla" que cobre as duas áreas mais vulneráveis ​​dos soldadores: visão/pele e respiração.Por que a proteção combinada é importanteA segurança na soldagem não é um desafio de camada única. Um capacete de soldagem a laser de alto desempenho lida com riscos ópticos, mas não consegue filtrar o ar que você respira. Por outro lado, um PAPR protege os pulmões, mas não protege seus olhos do brilho do laser. Ao integrar um capacete de soldagem a laser com um Respirador purificador de ar motorizado, os soldadores ganham proteção holística que lhes permite concentrar-se no trabalho de precisão sem comprometer a saúde. Seja na indústria automotiva, aeroespacial ou na fabricação de pequenos lotes, esta dupla garante que a segurança corresponda à sofisticação da tecnologia de soldagem a laser. Para saber mais, consulte www.newairsafety.com.
    LEIA MAIS
  • Principais componentes dos cartuchos de máscaras de gás: "Formulações específicas" combinadas com "Tipos de gás protegidos"
    Principais componentes dos cartuchos de máscaras de gás: "Formulações específicas" combinadas com "Tipos de gás protegidos"
    Aug 26, 2025
    Os componentes principais dos cartuchos para máscaras de gás variam significativamente dependendo do alvo de proteção (séries A/B/E/K). Essencialmente, "componentes específicos são usados ​​para tratar as propriedades químicas de gases específicos" — uma precisão vital quando esses cartuchos são combinados com Respiradores purificadores de ar motorizados, que não pode compensar materiais de filtro incompatíveis ou ineficazes. A seguir, uma explicação correspondente à classificação do tipo de gás mencionada anteriormente, com foco na relevância para PAPR:​1. Para a Série A (Gases/Vapores Orgânicos, por exemplo, Benzeno, Gasolina): Carvão Ativado como Núcleo​Componente principal: Carvão ativado com alta área superficial específica (principalmente carvão de casca de coco ou carvão, com porosidade superior a 90%. A área superficial de 1 grama de carvão ativado é equivalente à de um campo de futebol).Princípio de funcionamento: Utiliza a "adsorção física" do carvão ativado — moléculas de gás orgânico são adsorvidas nos microporos do carvão ativado devido às "forças de van der Waals" e não conseguem entrar na zona de respiração com o fluxo de ar. Isso o torna ideal para uso em respiradores purificadores de ar alimentados por papr utilizado em tarefas de pintura ou manuseio de solventes, onde a exposição contínua a vapores orgânicos requer adsorção confiável e duradoura.Otimização aprimorada: para gases orgânicos de baixo ponto de ebulição na Série A3 (por exemplo, metano, propano, que são extremamente voláteis), o "carvão ativado impregnado" (adicionado com pequenas quantidades de substâncias como silicone) é usado para aumentar a capacidade de adsorção de gases orgânicos de moléculas pequenas - crítico para respirador purificador de ar com pressão positiva usado em refinarias de petróleo ou plantas de processamento de gás natural. 2. Para a Série B (Gases/Vapores Inorgânicos, por exemplo, Cloro, Dióxido de Enxofre): Adsorventes Químicos como Componente Principal​Componente principal: Carvão ativado impregnado + óxidos metálicos (por exemplo, sulfato de cobre, permanganato de potássio, hidróxido de cálcio).Princípio de funcionamento: A maioria dos gases inorgânicos é altamente oxidante ou irritante e precisa ser convertida em substâncias inofensivas por meio de "reações químicas". Por exemplo:O cloro (Cl₂) reage com o hidróxido de cálcio para formar cloreto de cálcio (um sólido inofensivo);O dióxido de enxofre (SO₂) é oxidado em sulfato (fixado no material do filtro após dissolução em água) pela reação com permanganato de potássio.Essa estabilidade química é essencial para respiradores purificadores de ar motorizados usados ​​em plantas de fabricação de produtos químicos, onde picos repentinos nas concentrações de gases inorgânicos exigem neutralização rápida e eficaz.​3. Para a Série E (gases/vapores ácidos, por exemplo, ácido clorídrico, fluoreto de hidrogênio): Neutralizadores alcalinos​Componente principal: Hidróxido de potássio (KOH), hidróxido de sódio (NaOH) ou carbonato de sódio (suportado em carvão ativado ou transportadores inertes).Princípio de funcionamento: Utiliza a "reação de neutralização ácido-base" para converter gases ácidos em sais (inofensivos e não voláteis). Por exemplo:O ácido clorídrico (HCl) reage com o hidróxido de potássio para formar cloreto de potássio (KCl) e água;O fluoreto de hidrogênio (HF) reage com o hidróxido de sódio para formar fluoreto de sódio (NaF, um sólido), impedindo que ele corroa o trato respiratório.Esta fórmula resistente à corrosão é essencial para respiradores purificadores de ar motorizados usados ​​em oficinas de 酸洗 (decapagem) ou na fabricação de semicondutores, onde vapores ácidos representam riscos à saúde e ao equipamento.​4. Para a Série K (gases/vapores de amônia e amina, por exemplo, amônia, metilamina): adsorventes ácidos​Componente principal: Carvão ativado impregnado com ácido fosfórico (H₃PO₄) ou sulfato de cálcio.Princípio de funcionamento: Amônia e aminas são gases alcalinos e são fixados por "neutralização ácido-base". Por exemplo:A amônia (NH₃) reage com o ácido fosfórico para formar fosfato de amônio ((NH₄)₃PO₄, um sólido);​A metilamina (CH₃NH₂) reage com o sulfato de cálcio para formar sais estáveis ​​que não volatilizam mais.Essa neutralização direcionada é essencial para respiradores purificadores de ar motorizados usados ​​em fábricas de fertilizantes ou instalações de armazenamento refrigerado, onde vazamentos de amônia são um risco comum.​III. "Lógica de Correspondência" entre Estrutura e Componentes: Por que os cartuchos de máscaras de gás não podem ser misturados?​Pode-se observar no conteúdo acima que a "estrutura em camadas" e a "seleção de componentes" dos cartuchos de máscaras de gás são totalmente projetadas em torno do "alvo de proteção" — um princípio que é ainda mais crítico quando combinado com respiradores purificadores de ar motorizados, pois esses dispositivos amplificam tanto a eficácia dos cartuchos corretos quanto os riscos dos incorretos:​Se um recipiente de máscara de gás Série A (carvão ativado) for usado para proteger contra gases ácidos Série E com respiradores purificadores de ar motorizados, os gases ácidos penetrarão diretamente no carvão ativado (nenhuma reação de neutralização ocorrerá) e o fluxo de ar contínuo do PAPR fornecerá esses gases não filtrados diretamente ao usuário;Se um recipiente de máscara de gás Série K (adsorvente ácido) for exposto ao cloro Série B (altamente oxidante) em respiradores purificadores de ar motorizados, podem ocorrer reações adversas e até mesmo substâncias tóxicas podem ser produzidas — substâncias que o PAPR fará circular na zona de respiração.Isso também ecoa a "regra de ouro da seleção" mencionada anteriormente: os cartuchos de máscara de gás da série correspondente devem ser selecionados de acordo com o tipo de gás no ambiente de trabalho para garantir que a estrutura e os componentes realmente desempenhem seu papel, especialmente quando integrados aos respiradores purificadores de ar motorizados.​Conclusão​Um cartucho para máscara de gás não é um "recipiente de material único", mas uma combinação sofisticada de "estrutura em camadas + componentes específicos" — projetada para funcionar em harmonia com Respiradores Purificadores de Ar Motorizados. O revestimento externo garante a vedação do fluxo de ar do PAPR, a camada de pré-processamento filtra as impurezas para manter a eficiência do PAPR e a camada central de adsorção/neutralização direciona com precisão os gases específicos para manter limpo o ar fornecido pelo PAPR. Em última análise, ele atinge o efeito protetor de "impedir a entrada de gases nocivos e permitir a saída de ar limpo". Compreender esses detalhes não apenas nos ajuda a selecionar cartuchos de máscaras de gás de forma mais científica para máscaras padrão, mas é ainda mais crítico para usuários de Respiradores Purificadores de Ar Motorizados, que contam com a sinergia cartucho-PAPR para uma proteção consistente e confiável. Também nos permite avaliar com mais clareza "quando substituir os cartuchos" durante o uso (por exemplo, o efeito de proteção cairá drasticamente após a saturação da camada de adsorção central), adicionando uma "linha de defesa de conscientização" para a segurança respiratória, especialmente para aqueles que dependem de Respiradores Purificadores de Ar Motorizados em ambientes de alto risco. Para saber mais, clique em www.newairsafety.com.
    LEIA MAIS
  • Principais componentes e estrutura dos cartuchos de máscaras de gás: Compreendendo a "arquitetura central" por trás da proteção
    Principais componentes e estrutura dos cartuchos de máscaras de gás: Compreendendo a "arquitetura central" por trás da proteção
    Aug 25, 2025
    No sistema de proteção respiratória, os recipientes de máscara de gás servem como a "linha principal de defesa" contra gases/vapores nocivos - especialmente quando combinados com Respiradores purificadores de ar motorizados (PAPRs), que dependem de cilindros de alta qualidade para fornecer ar limpo e filtrado. Seu design estrutural e a seleção de componentes determinam diretamente a eficácia da proteção contra séries de gases como A, B, E e K (correspondentes aos gases orgânicos, gases inorgânicos, gases ácidos e gases de amônia/amina mencionados anteriormente), tornando essa combinação crucial para usuários de máscara respiratória motorizada .Abaixo está uma análise do princípio de funcionamento dos recipientes de máscaras de gás em dois aspectos: "estrutura em camadas" e "componentes principais", com foco em como eles se integram com melhor respirador papr. I. Estrutura típica de cartuchos de máscaras de gás: "Design de proteção em camadas" de fora para dentro​ Os cartuchos para máscaras de gás geralmente adotam uma estrutura cilíndrica selada (feita de metal ou plástico de alta resistência para garantir resistência a impactos e vazamentos) — um design adaptado para se adaptar aos sistemas de fluxo de ar dos Respiradores Purificadores de Ar Motorizados. Internamente, eles são divididos em 4 camadas funcionais principais, de acordo com a "direção do fluxo de ar". Essas camadas trabalham juntas para implementar a lógica de proteção de "primeiro filtrar as impurezas e, em seguida, adsorver/neutralizar os gases nocivos" — um processo que se alinha com o mecanismo de fornecimento contínuo de ar. soldagem de respirador papr:​ 1. Casca externa e camada de vedaçãoFunção: Proteger os materiais do filtro interno contra umidade e danos, garantindo que o fluxo de ar passe apenas pelos canais predefinidos (para evitar "vazamento por curto-circuito") — um requisito não negociável para respiradores purificadores de ar motorizados, que dependem de fluxo de ar desobstruído e selado para manter pressão positiva na máscara.Detalhes: A parte superior/inferior do invólucro é equipada com interfaces rosqueadas, que podem ser conectadas com precisão às tubulações de máscaras faciais ou Respiradores Purificadores de Ar Motorizados (PAPRs). Juntas de borracha são geralmente instaladas nas interfaces para melhorar a vedação — isso impede que gases não filtrados entrem diretamente na zona de respiração, um risco que pode comprometer completamente o efeito protetor dos Respiradores Purificadores de Ar Motorizados.2. Camada de pré-processamento de pré-filtração (opcional)Função: Filtra partículas como poeira e névoa de água presentes no ar para evitar que obstruam os poros da camada de adsorção subsequente, prolongando assim a vida útil do cartucho da máscara de gás. Para respiradores purificadores de ar motorizados usados ​​em ambientes de risco misto (por exemplo, indústrias químicas com poeira), esta camada reduz a frequência de substituição do cartucho e mantém um fluxo de ar consistente.Cenários aplicáveis: Se houver partículas no ambiente de trabalho (por exemplo, névoa de tinta em cabines de pintura, poeira em oficinas químicas), o cartucho da máscara de gás integrará esta camada. Seu material é semelhante aos "materiais de filtro de partículas da série P" mencionados anteriormente (por exemplo, fibra de polipropileno fundido por sopro), que podem atingir eficiência de filtragem de nível P1-P3 — ideal para uso com respiradores purificadores de ar motorizados em cenários onde gases e partículas estão presentes.3. Camada de adsorção/neutralização do núcleo (mais crítica)Função: Captura e remoção de gases/vapores nocivos por meio de adsorção física ou neutralização química. É a "área funcional central" do cartucho da máscara de gás, e seus componentes devem ser precisamente adaptados ao tipo de gás a ser protegido (séries A/B/E/K) — uma adaptação que afeta diretamente a segurança dos usuários que confiam em Respiradores Purificadores de Ar Motorizados para proteção contínua.Características Estruturais: Adota um design de "preenchimento de material filtrante granular" ou "elemento filtrante em formato de colmeia" para aumentar a área de contato entre o material filtrante e o fluxo de ar. Isso garante a reação completa dos gases — essencial para Respiradores Purificadores de Ar Motorizados, que fornecem um fluxo constante de ar que deve ser totalmente purificado antes de chegar ao usuário.4. Suporte traseiro e camada à prova de poeiraFunção: Fixar o material filtrante da camada de adsorção central para evitar que partículas caiam e entrem na zona de respiração; ao mesmo tempo, bloquear uma pequena quantidade de impurezas finas não filtradas pela camada de pré-filtração para purificar ainda mais o fluxo de ar. Esta camada é particularmente importante para respiradores purificadores de ar motorizados que operam com vazões de ar mais altas, pois o movimento mais rápido do ar pode desalojar partículas soltas do filtro sem o suporte adequado.Material: Tecido não tecido respirável ou malha metálica, que oferece suporte e permeabilidade ao ar, equilibrando a estabilidade estrutural com as demandas de fluxo de ar dos respiradores purificadores de ar motorizados. Se quiser saber mais, clique em www.newairsafety.com.
    LEIA MAIS
  • Série A, B, E, K: "Protetores Exclusivos" para Proteção contra Vapor de Gás
    Série A, B, E, K: "Protetores Exclusivos" para Proteção contra Vapor de Gás
    Aug 19, 2025
    As letras A, B, E e K representam diferentes tipos de gases/vapores, enquanto os números 1, 2 e 3, após eles, indicam níveis de proteção crescentes. Quanto maior o número, maior a capacidade de proteção (capacidade de adsorção), maior a concentração de poluentes aplicável e melhor a resistência às condições ambientais (como umidade), todos vitais para a eficácia de um Respirador purificador de ar motorizado.​ Série A (Gases/Vapores Orgânicos) A série A tem como alvo principalmente gases e vapores orgânicos, incluindo substâncias como benzeno, gasolina e acetona.A1:Como nível de proteção básico, é aplicável a vapores orgânicos de baixa a moderada concentração quando usado em um respirador purificador de ar motorizado.A2: Com um nível de proteção mais alto, a concentração de teste é geralmente mais de 5 vezes maior que a A1 e pode funcionar em ambientes de alta umidade, como oficinas de pintura com alta umidade e altas concentrações de vapores orgânicos, tornando-se uma escolha adequada para um respirador purificador de ar motorizado para soldagem em tais cenários.A3: Projetado especificamente para vapores orgânicos de baixo ponto de ebulição com um ponto de ebulição
    LEIA MAIS
  • Decodificando os rótulos dos filtros de proteção respiratória: os segredos por trás das séries P1-P3
    Decodificando os rótulos dos filtros de proteção respiratória: os segredos por trás das séries P1-P3
    Aug 18, 2025
    No campo da proteção respiratória, combinações de letras e números como P1, P2, P3 não são arranjadas aleatoriamente. Elas se originam das normas europeias EN (por exemplo, EN 14387, série EN 143) e servem como importantes etiquetas de classificação para meios filtrantes de proteção respiratória (cartuchos filtrantes, botijões de gás). Para equipamentos de proteção respiratória de alta eficiência, como o Respirador purificador de ar motorizado (PAPR), a seleção desses meios filtrantes determina diretamente sua eficácia protetora em diferentes ambientes de trabalho, o que está intimamente relacionado à nossa segurança respiratória. Compreender o significado desses rótulos pode nos ajudar a combinar com precisão os meios filtrantes adequados para respirador papr em cenários de trabalho complexos, dando assim pleno uso ao papel protetor do equipamento.​I. P1, P2, P3: A “Progressão em Três Níveis” dos Graus de Filtração de Partículas​"P" significa "Particulado". Os três graus P1, P2 e P3 visam principalmente partículas sólidas ou líquidas. Quanto maior o número, maior a eficiência de filtragem e o nível de proteção, e mais severos os cenários que podem suportar, que estão intimamente ligados às capacidades de proteção do PAPR. Papr respiratório O filtro PAPR fornece ar ativamente por meio de um ventilador elétrico, e a qualidade do meio filtrante com o qual está equipado afeta diretamente a limpeza do ar fornecido à zona de respiração. Meios filtrantes de diferentes qualidades, quando combinados com PAPR, podem construir uma defesa respiratória sólida para usuários em diversos ambientes.​P1: Este é o grau básico para filtragem de partículas, principalmente aplicável a partículas não oleosas de baixa toxicidade e baixa concentração, como poeira gerada durante a limpeza diária e pó de talco de baixa concentração. Possui uma eficiência de filtragem de ≥80% para partículas com diâmetro aerodinâmico de 0,3 μm, o que pode atender às necessidades de proteção de operações gerais com poeira leve. Quando equipado com meio filtrante de grau P1, o PAPR, com seu suprimento de ar contínuo e estável, permite que os usuários respirem mais suavemente durante operações com poeira leve, como limpeza de escritórios e manuseio simples de materiais, enquanto bloqueia efetivamente partículas não oleosas de baixa concentração. Por exemplo, quando os funcionários estão limpando as estantes de uma biblioteca, usar um PAPR com meio filtrante P1 pode impedi-los de inalar poeira sem o abafamento das máscaras tradicionais.​P2: Sua capacidade de proteção melhorou significativamente em comparação com P1, e ele pode lidar com partículas oleosas e não oleosas moderadamente tóxicas, como vapores gerados durante soldagem, vapores de óleo de cozinha e algumas poeiras metálicas. Sua eficiência de filtragem para partículas de 0,3 μm é ≥ 94%, desempenhando um papel importante em cenários como soldagem, retificação e poeira agrícola, onde tanto partículas oleosas quanto não oleosas precisam ser protegidas. respirador purificador de ar pessoal, quando combinado com o meio filtrante P2, adapta-se melhor a esses ambientes de trabalho complexos. Em oficinas de soldagem, trabalhadores que utilizam PAPR com meio filtrante P2, o ventilador elétrico injeta ar filtrado na máscara, que não apenas filtra com eficiência os vapores gerados durante a soldagem, mas também mantém a pressão positiva dentro da máscara para impedir a entrada de poluentes externos, reduzindo significativamente o risco de os soldadores inalarem partículas nocivas.​P3: É um filtro de partículas de alta qualidade, aplicável a todos os tipos de partículas altamente tóxicas e de alta concentração, como amianto, poeira radioativa e vapores metálicos de alta concentração. Sua eficiência de filtragem é ≥99,95%, próxima ao nível de "filtragem de alta eficiência", e geralmente adota um design "à prova de vazamentos" com melhor desempenho de vedação, proporcionando proteção sólida para operações de alto risco. Quando o PAPR é equipado com meio filtrante P3, seu desempenho de proteção atinge seu pico, capaz de proteger os usuários em ambientes extremamente perigosos. Em locais onde resíduos de amianto são manuseados, os funcionários devem usar PAPR com meio filtrante P3. A filtragem de alta eficiência e o design à prova de vazamentos do meio filtrante P3, combinados com o potente suprimento de ar do PAPR, podem garantir que cada respiração de ar inalada pelos usuários tenha passado por uma filtragem rigorosa, minimizando os danos das fibras de amianto ao corpo humano.​Em conclusão, a combinação de meios filtrantes de grau P1, P2, P3 e Respirador purificador de ar motorizado Oferece uma solução flexível e eficiente para proteção respiratória em diferentes ambientes com poeira. Compreender corretamente essas classificações e selecionar o meio filtrante adequado de acordo com o ambiente de trabalho pode permitir que o PAPR aproveite ao máximo suas vantagens e proteja nossa saúde respiratória. Para obter mais informações, clique em www.newairsafety.com.​
    LEIA MAIS
  • Explore uma nova experiência em proteção de segurança - NEW AIR 3002 PAPR para cilindro de ar
    Explore uma nova experiência em proteção de segurança - NEW AIR 3002 PAPR para cilindro de ar
    Aug 13, 2025
    No campo da proteção de segurança, um excelente dispositivo de proteção pode construir uma defesa sólida para os trabalhadores. Hoje, gostaria de recomendar fortemente o 3002 PAPR para cilindro de ar da NEW AIR. Com inúmeras vantagens excepcionais, proporciona aos usuários uma experiência de proteção íntima e confiável. Em primeiro lugar, em relação ao design da interface, ela adota a interface rosqueada padrão RD40 (para o canister). Essa interface padronizada torna a instalação e a substituição do canister extremamente convenientes, permitindo a preparação rápida do equipamento e economizando tempo. Em termos de transporte, o design da alça dupla é muito fácil de usar. Ao usar equipamentos de proteção por um longo período, a carga nos ombros costuma ser pesada. As alças duplas podem distribuir o peso de forma eficaz e reduzir a sensação de sobrecarga do usuário, deixando os ombros mais relaxados mesmo em uso prolongado. Em operação, o design com relevo grande do botão de controle é particularmente prático. Em alguns ambientes complexos ou de baixa visibilidade, os usuários podem facilmente encontrar e operar os botões pelo toque sem precisar olhar atentamente, o que melhora significativamente a conveniência e a eficiência da operação. Além disso, é leve e todo o corpo é lavável. Essa característica leve permite que os usuários não sintam aquela sensação pesada de restrição e se movam com mais liberdade. O design lavável em todo o corpo facilita a limpeza após o uso, mantendo o equipamento limpo e higiênico para o próximo uso. Em termos de suprimento de ar e funções de alarme, possui um volume de ar inteligente e estável, que pode fornecer ar limpo aos usuários e garantir a segurança respiratória. O sistema de alarme duplo pode emitir um alarme em tempo hábil quando ocorre uma situação anormal, lembrando os usuários de tomarem medidas. A dupla garantia deixa as pessoas mais tranquilas. Além disso, é equipado com um pré-filtro externo de algodão. Este design pode prolongar a vida útil do cartucho e reduzir a frequência de substituição, o que não só economiza custos, mas também reduz o incômodo da substituição. O design exclusivo da capa protetora do cartucho permite que o equipamento lide facilmente com diversos ambientes complexos. Seja em um ambiente industrial severo ou em outros ambientes especiais, ele pode fornecer boa proteção para o cartucho e garantir o desempenho estável do equipamento. Em geral, o NOVO AIR 3002 respirador purificador de ar motorizado O cilindro de ar comprimido apresenta excelente desempenho em diversos aspectos, como interface, transporte, operação, peso, limpeza, funções principais e proteção. É um auxiliar confiável e eficaz na área de proteção e segurança.
    LEIA MAIS
  • Requisitos de teste CE para respiradores purificadores de ar motorizados (PAPRs)
    Requisitos de teste CE para respiradores purificadores de ar motorizados (PAPRs)
    Jul 30, 2025
    Quando se trata de equipamentos de proteção individual (EPI) projetados para proteger os trabalhadores de contaminantes nocivos transportados pelo ar, Respiradores purificadores de ar motorizados Os PAPRs (Protetores de Risco de Testes) destacam-se como ferramentas essenciais em setores que vão da indústria à saúde. Mas, para entrar no mercado europeu, esses dispositivos que salvam vidas precisam atender aos rigorosos requisitos de certificação CE. Vamos analisar os principais padrões e obrigações de teste que os fabricantes precisam conhecer.​Compreendendo o Marco Regulatório​ Em primeiro lugar, é essencial reconhecer onde os PAPRs se enquadram nas regulamentações da UE. Como dispositivos projetados para proteger os usuários de riscos respiratórios — incluindo poeira, fumaça e gases tóxicos —, os PAPRs são classificados como EPI de Categoria III, de acordo com o Regulamento (UE) 2016/425. Essa classificação se aplica a equipamentos de alto risco, cuja falha pode resultar em ferimentos graves ou morte, o que significa que a conformidade não é negociável.​Os EPIs da Categoria III exigem testes e supervisão rigorosos por um Organismo Notificado — uma organização credenciada pela UE e autorizada a verificar a conformidade. A autodeclaração não é suficiente neste caso; a validação por terceiros é obrigatória. Normas básicas: EN 12941 e posteriores A base dos testes de CE para PAPRs é a EN 12941:2001+A1:2009, a norma europeia que rege especificamente os respiradores purificadores de ar motorizados. Esta norma descreve critérios de desempenho, segurança e design, enquanto normas adicionais abordam componentes específicos, como filtros e baterias. Vamos analisar as principais áreas de teste:​1. Desempenho do fluxo de ar: garantindo proteção confiável​No cerne da funcionalidade de um PAPR está sua capacidade de fornecer um suprimento consistente de ar filtrado. Os testes aqui se concentram em:Taxas mínimas de fluxo de ar: Para máscaras semifaciais, a mínima é de 160 L/min; para máscaras faciais completas, é de 170 L/min. Essas taxas devem permanecer estáveis dentro de uma tolerância de 10% durante 30 minutos de operação contínua.Manutenção de pressão positiva: O respirador deve manter uma pressão positiva (≥20 Pa) dentro da máscara para evitar vazamento de ar não filtrado, mesmo que haja um pequeno espaço (vazamento de 10%) entre a máscara e o rosto do usuário.Estabilidade do fluxo sob condições variáveis: os testes simulam diferentes taxas de respiração (de 15 respirações/min em repouso a 40 respirações/min durante trabalho pesado) para garantir que o fluxo de ar não caia perigosamente. 2. Eficácia protetora: bloqueio de substâncias nocivas​A principal função de um PAPR é filtrar contaminantes, portanto, os testes verificam tanto a vedação do dispositivo quanto o desempenho de seus filtros:Teste de vazamento total: Utilizando aerossóis (como cloreto de sódio ou DOP), os testadores medem a quantidade de ar não filtrado que entra na máscara. Para obter os níveis mais altos de proteção, o vazamento total deve ser ≤ 0,05%.Compatibilidade do filtro: Os filtros devem atender a normas como EN 149 (para filtros de partículas) ou EN 14387 (para filtros de gás/vapor). Por exemplo, um filtro P100 deve capturar ≥99,97% de partículas de 0,3 μm.Integridade da vedação: A conexão entre o filtro e o host PAPR é testada para redução de pressão, permitindo no máximo 50 Pa de perda por minuto para garantir que não haja desvio. 3. Segurança Mecânica e Estrutural​Os PAPRs devem suportar condições de trabalho adversas sem comprometer a segurança do usuário:Durabilidade do material: componentes como máscaras e mangueiras são submetidos a ciclos extremos de temperatura (-30 °C a +70 °C) e exposição UV (72 horas) para verificar se há rachaduras ou deformações.Teste de resistência: tiras, fixações de máscara e conexões de filtro devem resistir a forças como 150 N (para tiras de cabeça) e 50 N (para interfaces de filtro) sem quebrar.Resistência ao impacto: as lentes da máscara facial completa são testadas com uma bola de aço de 120 g lançada de 1,3 metros para garantir que não se quebrem.4. Segurança elétrica: Proteção de energia com segurança​Como os PAPRs dependem de motores e baterias, a segurança elétrica é primordial:Isolamento e aterramento: Os motores devem suportar 2500 V CA por 1 minuto sem falha, e os componentes metálicos devem ter uma resistência de aterramento ≤0,1 Ω.Desempenho da bateria: Baterias (geralmente de íons de lítio) devem passar nos testes da norma EN 62133, incluindo cenários de curto-circuito, sobrecarga e esmagamento, sem risco de incêndio ou explosão. Elas também devem fornecer pelo menos 4 horas de autonomia com vazão nominal.Conformidade com EMC: para evitar interferência de ferramentas ou rádios, os PAPRs devem atender aos padrões EN 61000 para compatibilidade eletromagnética.5. Durabilidade e Adaptabilidade Ambiental​PAPRs são projetados para uso a longo prazo, portanto, os testes garantem que eles resistam ao teste do tempo:Testes de envelhecimento: os motores funcionam continuamente por 500 horas com perda de fluxo de ar de ≤10%, enquanto as baterias retêm ≥80% da capacidade após 300 ciclos de carga.Desempenho em ambientes extremos: os dispositivos devem operar em temperaturas de -30°C e 40°C/90% de umidade, sem quedas no fluxo de ar ou falhas elétricas.Casos Especiais: Adaptação a Ambientes ÚnicosCertos setores exigem testes extras:Ambientes médicos: os PAPRs usados na área da saúde devem atender à norma EN 14683 para biocompatibilidade (por exemplo, sem irritação da pele) e podem exigir revestimentos antimicrobianos.Ambientes explosivos: Para uso em zonas com gases inflamáveis, os PAPRs precisam de certificação ATEX (EN 13463) para evitar faíscas ou descarga estática. Teste CE para melhor respirador purificador de ar motorizado é rigoroso, mas está enraizado em um objetivo simples: garantir que esses dispositivos protejam os usuários quando eles mais precisam. Ao aderir à norma EN 12941 e às normas relacionadas, os fabricantes não só ganham acesso ao mercado da UE, como também demonstram um compromisso com a segurança que gera confiança tanto entre trabalhadores quanto entre empregadores.
    LEIA MAIS
  • BXH-3001 PAPR (respiradores purificadores de ar motorizados) da NEW AIR obtêm certificação CE, TH3 PR SL de acordo com EN12941
    BXH-3001 PAPR (respiradores purificadores de ar motorizados) da NEW AIR obtêm certificação CE, TH3 PR SL de acordo com EN12941
    Jul 19, 2025
    Compreendendo os padrões por trás do NOVO Certificado de Exame de Tipo UE AIR BXH-3001Quando se trata de equipamentos de proteção individual (EPI), especialmente dispositivos respiratórios, a conformidade com padrões rigorosos é inegociável. NEW AIR BXH-3001dispositivo de respiração purificadora de ar motorizado com um capacete de soldagem com escurecimento automático oferece um exemplo claro de como essas normas garantem segurança e confiabilidade. Vamos analisar as principais normas e regulamentações que sustentam essa certificação. A espinha dorsal regulatória: UE 2016/425No cerne deste certificado está o Regulamento (UE) 2016/425, uma peça legislativa fundamental que rege os EPI na União Europeia. Este regulamento substitui a antiga Diretiva do Conselho 89/686/CEE e estabelece requisitos essenciais de saúde e segurança (EHSRs) para todos os EPI vendidos na UE.Normas Harmonizadas: Série EN 12941Além da regulamentação abrangente, o BXH-3001 adere à EN 12941 norma, especificamente suas alterações:EN 12941:1998EN 12941:1998/A1:2003EN 12941:1998/A2:2008Estas normas estão harmonizadas pela norma UE 2016/425, o que significa que são reconhecidas como estando em conformidade com os EHSR do regulamento. A norma EN 12941 centra-se em respirador alimentado por ar purificado que incorporam um capacete ou capuz—exatamente a categoria em que o BXH-3001 se enquadra.Os principais requisitos da norma EN 12941 incluem:Teste de desempenho: Garantir que o dispositivo filtre efetivamente contaminantes (neste caso, aerossóis sólidos e líquidos) e mantenha o fluxo de ar sob várias condições.Recursos de segurança: Incluindo durabilidade dos materiais, compatibilidade com o capacete/capuz e confiabilidade do sistema de energia (ventiladores, filtros, etc.).Marcação e instruções: Rotulagem clara para orientar os usuários sobre o uso adequado, manutenção e limitações. Classificação: Categoria III e Proteção TH3O BXH-3001 é classificado como EPI Categoria III, a categoria de risco mais elevada segundo a diretiva UE 2016/425. A categoria III inclui EPI concebidos para proteger contra "riscos graves", como a exposição a aerossóis nocivos em ambientes de soldadura ou industriais. Esta classificação exige uma avaliação rigorosa da conformidade, incluindo um exame de tipo (Módulo B) e verificações contínuas da produção (Módulo C2, conforme especificado no certificado).Além disso, o dispositivo atende Requisitos da classe TH3. De acordo com a norma EN 12941, "TH" refere-se ao nível de proteção contra aerossóis, sendo que TH3 representa um alto nível de eficiência de filtragem. Isso confirma que o BXH-3001, combinado com seu filtro de partículas TH3 PR SL, protege os usuários de forma confiável contra aerossóis sólidos e líquidos — essenciais para soldagem e tarefas similares de alto risco. O que isso significa para usuários e empresasPara os trabalhadores, esta certificação é uma garantia de que o BXH-3001 sistema papr foi verificado de forma independente para cumprir com as exigências, mesmo em ambientes exigentes. Para as empresas, a conformidade com essas normas garante o acesso ao mercado na UE e gera confiança na segurança dos produtos.Notavelmente, a marca CE no BXH-3001 (acompanhada pelo número do organismo notificado 1024, conforme exigido para EPI de categoria III) é mais do que um rótulo: é uma prova da adesão a uma estrutura robusta de padrões e regulamentações.Em resumo, o Certificado de Exame de Tipo da UE para o NEW AIR BXH-3001 baseia-se em padrões rigorosos: UE 2016/425 para conformidade regulatória, EN 12941 para desempenho técnico e uma classificação clara para definir seu escopo de proteção. Para quem depende de proteção respiratória em ambientes de alto risco, compreender esses padrões é fundamental para escolher o equipamento certo.
    LEIA MAIS

Deixe um recado

Deixe um recado
Se você estiver interessado em nossos produtos e quiser saber mais detalhes, deixe uma mensagem aqui e responderemos o mais breve possível.
Enviar
CONTATE-NOS: sales@txhyfh.com

Lar

Produtos

Whatsapp

Contate-nos