inquiry
Deixe um recado
Se você estiver interessado em nossos produtos e quiser saber mais detalhes, deixe uma mensagem aqui e responderemos o mais breve possível.
Enviar
Tecnologia de proteção de soldagem Bengbu Longkai Co., Ltd.
Lar

respirador papr

respirador papr

  • Por que os marceneiros precisam de um respirador PAPR?
    Por que os marceneiros precisam de um respirador PAPR?
    Dec 15, 2025
     Quando se pensa em marcenaria, imagens de lascas de madeira voando e o aroma intenso da madeira costumam vir à mente. No entanto, poucos se atentam aos "assassinos invisíveis à saúde" — a poeira de madeira. Muitos artesãos estão acostumados a usar máscaras comuns enquanto trabalham, pensando: "Contanto que as partículas maiores sejam bloqueadas, está tudo bem". Mas com a crescente conscientização sobre saúde ocupacional, cada vez mais profissionais estão recorrendo a... sistema paprHoje, vamos explorar por que o trabalho em madeira, um ofício aparentemente "simples", exige equipamentos de proteção de "nível profissional". Primeiramente, é crucial entender: os riscos da poeira de madeira são muito maiores do que você imagina. O processamento da madeira gera não apenas lascas visíveis, mas também uma grande quantidade de partículas inaláveis ​​(PM2,5). Essas minúsculas partículas podem penetrar profundamente no trato respiratório e o acúmulo a longo prazo pode levar a doenças ocupacionais como pneumoconiose e bronquite. O que é ainda mais preocupante é que a poeira de algumas madeiras nobres (como jacarandá e carvalho) contém componentes alergênicos, que podem causar coceira na pele e crises de asma ao contato. As máscaras comuns têm eficiência de filtragem insuficiente ou vedação inadequada — a poeira pode facilmente passar pelas frestas ao redor do nariz e do queixo, reduzindo consideravelmente sua eficácia protetora. A principal vantagem de uma máscara de proteção é a sua capacidade de filtrar a poeira de forma eficaz. respirador purificador de ar positivo O diferencial está na sua "proteção ativa + filtragem de alta eficiência": ela aspira o ar ativamente através de um ventilador embutido, filtra-o com um filtro HEPA e, em seguida, fornece o ar limpo para a máscara, bloqueando a entrada de poeira na fonte. A complexidade das tarefas de marcenaria destaca ainda mais a insubstituibilidade dos respiradores purificadores de ar motorizados (PAPR). Os marceneiros realizam uma variedade de tarefas, desde serrar e aplainar até lixar e dar acabamento. Cada processo produz poluentes diferentes: serrar madeira dura gera muitas lascas afiadas, lixar cria poeira ultrafina e o acabamento pode ser acompanhado por compostos orgânicos voláteis (COVs). As máscaras comuns geralmente são ineficazes contra essa "poluição composta", mas os PAPR podem ser equipados com diferentes filtros de acordo com os diferentes processos — eles não apenas filtram a poeira, mas também oferecem proteção contra poluentes gasosos como os COVs. Mais importante ainda, as operações de marcenaria geralmente exigem que o profissional se incline e gire com frequência, o que pode deslocar facilmente as máscaras comuns. As máscaras PAPR, no entanto, são projetadas para se ajustarem perfeitamente ao rosto e são fixadas com faixas de cabeça ou capacetes de segurança. Mesmo ao se inclinar para lixar uma mesa ou inclinar a cabeça para cortar madeira por longos períodos, elas mantêm uma boa vedação. O conforto durante longas horas de trabalho é um dos principais motivos pelos quais os respiradores com purificação de ar motorizada (PAPR) estão ganhando popularidade entre os marceneiros. É comum que esses profissionais trabalhem mais de 8 horas por dia. Máscaras comuns, especialmente as de alta proteção como as N95, têm baixa respirabilidade. Usá-las por muito tempo pode causar aperto no peito, falta de ar e deixar marcas no rosto. Os PAPR, por outro lado, mantêm uma leve pressão positiva dentro da máscara por meio de um suprimento contínuo de ar ativo, facilitando a respiração e reduzindo efetivamente a sensação de abafamento. Alguns podem pensar respiradores motorizados As máscaras PAPR são mais caras do que as máscaras comuns e oferecem uma relação custo-benefício ruim. Mas, considerando os custos com saúde a longo prazo, esse investimento definitivamente vale a pena. Os custos de tratamento para doenças ocupacionais como a pneumoconiose são altos e, uma vez contraídas, são difíceis de curar, afetando seriamente a qualidade de vida e a capacidade de trabalho. Um respirador PAPR confiável pode ser usado por muito tempo, desde que o filtro seja trocado regularmente. Ele não só protege sua saúde, como também evita a perda de dias de trabalho por motivo de doença. Para estúdios de marcenaria profissional, fornecer respiradores PAPR aos funcionários também é uma demonstração de responsabilidade corporativa, que pode fortalecer a coesão da equipe e a segurança no trabalho. Trabalhar com madeira é um ofício que exige paciência e engenhosidade. Proteger sua saúde é essencial para melhor dominar essa arte. Máscaras comuns podem ser suficientes para ambientes com pouca poeira e de curta duração, mas para operações complexas de marcenaria de longa duração, a alta eficiência de proteção, o conforto e a segurança para a saúde proporcionados pelos respiradores com purificação de ar motorizada (PAPR) são insubstituíveis por equipamentos de proteção comuns. Não deixe que o "estar acostumado" ou o "não tem problema" se tornem ameaças ocultas à sua saúde. Adicione um PAPR à sua bancada de trabalho e torne cada sessão de aplainamento e lixamento mais tranquila. Para saber mais, clique aqui. www.newairsafety.com.
    LEIA MAIS
  • Cartucho PAPR para pintura automotiva: A2P3 é o melhor
    Cartucho PAPR para pintura automotiva: A2P3 é o melhor
    Dec 12, 2025
     Na pintura automotiva, o brilho e a suavidade do acabamento são os principais objetivos do processo, mas os riscos potenciais de poluição merecem mais atenção. Desde a remoção da ferrugem com primer, passando pela aplicação da cor base até a selagem com verniz, todo o processo gera dupla poluição: por um lado, partículas de névoa de tinta com diâmetro de 0,1 a 5 mícrons, que podem ser inaladas diretamente e depositadas nos pulmões; por outro lado, vapores orgânicos voláteis provenientes de solventes de tinta, como tolueno, xileno, acetato de etila e outros Compostos Orgânicos Voláteis (COVs), que não só possuem odor pungente, como também podem danificar os sistemas nervoso e respiratório com exposição prolongada. Máscaras comuns contra poeira bloqueiam apenas partículas grandes, enquanto máscaras de carvão ativado têm capacidade de adsorção limitada e são propensas à saturação. Somente cartuchos para gases tóxicos, com seu design de filtragem específico, podem bloquear simultaneamente partículas e vapores orgânicos, servindo como a principal linha de defesa para a proteção da pintura automotiva. Hoje, vamos analisar por que os cartuchos de gás tóxico são indispensáveis ​​para a pintura automotiva e se o popular cartucho A2P3 é realmente adequado. A "poluição composta" característica da pintura automotiva determina que os cartuchos de gases tóxicos não são um "equipamento opcional", mas sim uma "configuração necessária" — especialmente quando combinados com um respirador de ar alimentado por bateria (PAPR). Em primeiro lugar, os riscos sinérgicos das partículas de névoa de tinta e dos vapores orgânicos são muito maiores do que a poluição isolada — as partículas finas atuam como "veículos" para os vapores orgânicos, penetrando mais profundamente no trato respiratório e intensificando a infiltração tóxica. Os equipamentos de proteção comuns não conseguem lidar com ambos: máscaras de poeira de camada única não têm efeito de bloqueio sobre os vapores orgânicos, enquanto as caixas de filtro para vapores orgânicos puros ficam obstruídas pela névoa de tinta, levando a uma queda acentuada na eficiência da filtragem. Em segundo lugar, a continuidade das operações de pintura exige equipamentos de proteção estáveis ​​e duráveis. Os cartuchos para gases tóxicos adotam uma estrutura de dupla camada de "pré-filtragem de partículas + adsorção química": a névoa de tinta é interceptada primeiro pela camada de pré-filtragem para evitar a obstrução da camada de adsorção, e o carvão ativado e outros materiais adsorventes capturam eficientemente os vapores orgânicos, garantindo proteção estável durante horas de operação contínua quando usados ​​com um PAPR. Mais importante ainda, os cartuchos para gases tóxicos em conformidade devem passar por certificações profissionais, com sua eficiência de filtragem e alcance de proteção rigorosamente testados para atender aos requisitos de segurança e conformidade dos cenários de pintura. A lógica fundamental para selecionar o cartucho de gás tóxico correto é "corresponder com precisão ao tipo e à concentração da poluição", o que exige, primeiramente, a compreensão das regras de codificação dos modelos de cartuchos de gás tóxico. O modelo de um cartucho de gás tóxico geralmente consiste em "código do tipo de proteção + nível de proteção". Por exemplo, a sigla "Classe A" geralmente se refere à proteção contra vapores orgânicos, "Classe P" à proteção contra partículas, e o número após a letra representa o nível de proteção (quanto maior o número, maior o nível). A principal poluição na pintura automotiva é "vapor orgânico + partículas de névoa de tinta", portanto, a seleção deve se concentrar em tipos de proteção composta que cubram "vapor orgânico + partículas", em vez de cartuchos de função única. Combinando a prática da indústria e as características da poluição, o cartucho A2P3 é precisamente o modelo principal mais adequado para pintura automotiva. Além disso, ajustes flexíveis são necessários: para cenários de alta concentração, como cabines de pintura fechadas, recomenda-se o uso do A3P3; para pulverização de tinta à base de água, como as partículas de névoa de tinta são mais finas, deve-se garantir o nível P3, mas a estrutura básica de proteção composta ainda considera o A2P3 como referência. Escolher indiscriminadamente cartuchos de gás tóxico de um único tipo ou de baixo nível equivale à "exposição passiva" aos riscos de poluição. Como o "modelo ideal" para pintura automotiva — especialmente quando usado com um sistema de respirador PAPR—A adaptabilidade do cartucho A2P3 decorre da sua correspondência precisa com a poluição da pintura. Vamos analisar primeiro o valor central do modelo: "A2" destina-se à proteção contra vapores orgânicos de concentração média (solventes comuns de pintura, como tolueno, xileno e acetato de etila, têm pontos de ebulição superiores a 65 °C, abrangendo totalmente a faixa de proteção de A2), e "P3" proporciona uma interceptação de partículas de alta eficiência (eficiência de filtragem ≥99,95%, com taxa de interceptação de quase 100% para partículas de névoa de tinta de 0,1 a 5 mícrons). Em termos de adaptabilidade ao cenário, seja para retoques de pintura em oficinas de reparação de automóveis, pintura de veículos inteiros em pequenas oficinas de pintura ou operações gerais com tintas convencionais à base de óleo ou água, a concentração de vapor orgânico é geralmente média e o diâmetro das partículas de névoa de tinta concentra-se em 0,3 a 5 mícrons, o que corresponde perfeitamente aos parâmetros de proteção de A2P3 e à capacidade de fornecimento de ar de um respirador purificador de ar motorizado (PAPR) padrão. Na prática, sua estrutura de dupla camada, composta por uma "camada de pré-filtragem e uma camada de adsorção de alta eficiência", intercepta a névoa de tinta, evitando o entupimento da camada de adsorção e estendendo a vida útil contínua para 4 a 8 horas, o que atende plenamente à duração de um trabalho diário de pintura. A única exceção ocorre ao pulverizar tintas especiais à base de solventes de alta concentração (como tintas metálicas importadas com alto teor de sólidos) ou em operações contínuas em espaços totalmente fechados. Nesses casos, recomenda-se a utilização do modelo A3P3. No entanto, o A2P3 continua sendo a melhor opção para mais de 90% dos cenários de pintura convencionais quando combinado com um respirador purificador de ar motorizado (PAPR). Após selecionar o modelo principal A2P3, o uso correto é essencial para maximizar o valor da proteção. Três detalhes importantes exigem atenção: primeiro, a compatibilidade com os equipamentos de suporte — que devem ser usados ​​com um respirador purificador de ar pessoal ou máscara de gás hermética, e passar por um teste de estanqueidade para garantir que não haja vazamentos, evitando o problema de "cartucho qualificado, mas com proteção falha"; em segundo lugar, estabelecer um mecanismo de alerta precoce de saturação — quando um odor de solvente for sentido ou a resistência à respiração aumentar significativamente, substitua o cartucho imediatamente, mesmo que a vida útil teórica não tenha sido atingida. O limite de uso contínuo do A2P3 em concentração média geralmente não ultrapassa 8 horas; em terceiro lugar, padronizar o armazenamento e a manutenção — o prazo de validade do A2P3 fechado é de 3 anos; após aberto, se não for utilizado, deve ser selado e armazenado por no máximo 30 dias, mantendo-o longe da umidade e da luz solar direta para evitar a degradação do desempenho de adsorção. Em conclusão, o núcleo da proteção da pintura automotiva é a "combinação precisa da poluição composta". Com sua combinação precisa de proteção de "vapor orgânico + partículas de alta eficiência", o cartucho A2P3 se torna o modelo mais adequado para a maioria dos cenários. Com base no A2P3 e com atualizações flexíveis de acordo com a concentração do cenário, o cartucho de gás tóxico pode realmente se tornar um "escudo de saúde" para os profissionais de pintura.Se você quiser saber mais, clique aqui.www.newairsafety.com.
    LEIA MAIS
  • Capacete de soldagem a laser e respirador purificador de ar motorizado: proteção sinérgica para soldadores
    Capacete de soldagem a laser e respirador purificador de ar motorizado: proteção sinérgica para soldadores
    Sep 04, 2025
    A soldagem a laser revolucionou a fabricação de precisão, mas também traz desafios de segurança únicos — desde a radiação laser intensa até os vapores metálicos. Para lidar com esses riscos, equipamentos de proteção especializados são essenciais, e hoje exploraremos como um capacete de soldagem a laser funciona em conjunto com um Respirador purificador de ar motorizado para manter os soldadores seguros.A proteção para os olhos e o rosto: capacete de soldagem a laser NEW AIRTomemos como exemplo o capacete de soldagem a laser NEW AIR. Suas especificações técnicas revelam uma defesa focada contra a radiação laser de fibra de 950–1100 nm — ideal para máquinas de soldagem a laser portáteis. O capacete possui uma máscara de nylon durável e uma janela de PC (policarbonato) com absorção de laser. Esta janela possui uma densidade óptica (DO) superior a 8 na faixa de 950–1100 nm, bloqueando quase toda a energia laser nociva. Com uma classificação de tonalidade DIN4, ele também protege contra ofuscamento e luz de arco secundário, garantindo visibilidade nítida e protegendo os olhos e a pele do rosto de queimaduras ou danos causados ​​pela radiação a longo prazo.Respiração fácil com um respirador purificador de ar motorizadoEnquanto o capacete de soldagem a laser protege os olhos e o rosto, um respirador papr aborda outra ameaça crítica: perigos aéreos. A soldagem a laser libera partículas finas de metal, ozônio e óxidos de nitrogênio — todos os quais podem irritar ou danificar o sistema respiratório. Um PAPR usa um ventilador alimentado por bateria para aspirar o ar através de filtros de alta eficiência e, em seguida, fornece ar limpo e pressurizado para a zona de respiração do usuário (geralmente por meio de um capuz ou máscara facial). Esse fluxo de ar ativo não apenas filtra os contaminantes, mas também reduz a resistência respiratória, tornando as longas sessões de soldagem mais confortáveis.Sinergia: Capacete e PAPR como uma Defesa UnificadaA relação entre um capacete de soldagem a laser e um respirador de ar motorizado está enraizado em proteção abrangenteO capacete impede que a luz e os respingos perigosos atinjam os olhos e o rosto, enquanto o PAPR garante que cada respiração esteja livre de vapores tóxicos. Em ambientes como espaços confinados ou operações de soldagem a laser de alto volume (onde as concentrações de vapores aumentam e a radiação permanece intensa), o uso de ambas as ferramentas não é apenas recomendado, mas também uma necessidade para a saúde ocupacional a longo prazo. Juntas, elas criam uma "barreira dupla" que cobre as duas áreas mais vulneráveis ​​dos soldadores: visão/pele e respiração.Por que a proteção combinada é importanteA segurança na soldagem não é um desafio de camada única. Um capacete de soldagem a laser de alto desempenho lida com riscos ópticos, mas não consegue filtrar o ar que você respira. Por outro lado, um PAPR protege os pulmões, mas não protege seus olhos do brilho do laser. Ao integrar um capacete de soldagem a laser com um Respirador purificador de ar motorizado, os soldadores ganham proteção holística que lhes permite concentrar-se no trabalho de precisão sem comprometer a saúde. Seja na indústria automotiva, aeroespacial ou na fabricação de pequenos lotes, esta dupla garante que a segurança corresponda à sofisticação da tecnologia de soldagem a laser. Para saber mais, consulte www.newairsafety.com.
    LEIA MAIS
  • Principais componentes dos cartuchos de máscaras de gás: "Formulações específicas" combinadas com "Tipos de gás protegidos"
    Principais componentes dos cartuchos de máscaras de gás: "Formulações específicas" combinadas com "Tipos de gás protegidos"
    Aug 26, 2025
    Os componentes principais dos cartuchos para máscaras de gás variam significativamente dependendo do alvo de proteção (séries A/B/E/K). Essencialmente, "componentes específicos são usados ​​para tratar as propriedades químicas de gases específicos" — uma precisão vital quando esses cartuchos são combinados com Respiradores purificadores de ar motorizados, que não pode compensar materiais de filtro incompatíveis ou ineficazes. A seguir, uma explicação correspondente à classificação do tipo de gás mencionada anteriormente, com foco na relevância para PAPR:​1. Para a Série A (Gases/Vapores Orgânicos, por exemplo, Benzeno, Gasolina): Carvão Ativado como Núcleo​Componente principal: Carvão ativado com alta área superficial específica (principalmente carvão de casca de coco ou carvão, com porosidade superior a 90%. A área superficial de 1 grama de carvão ativado é equivalente à de um campo de futebol).Princípio de funcionamento: Utiliza a "adsorção física" do carvão ativado — moléculas de gás orgânico são adsorvidas nos microporos do carvão ativado devido às "forças de van der Waals" e não conseguem entrar na zona de respiração com o fluxo de ar. Isso o torna ideal para uso em respiradores purificadores de ar alimentados por papr utilizado em tarefas de pintura ou manuseio de solventes, onde a exposição contínua a vapores orgânicos requer adsorção confiável e duradoura.Otimização aprimorada: para gases orgânicos de baixo ponto de ebulição na Série A3 (por exemplo, metano, propano, que são extremamente voláteis), o "carvão ativado impregnado" (adicionado com pequenas quantidades de substâncias como silicone) é usado para aumentar a capacidade de adsorção de gases orgânicos de moléculas pequenas - crítico para respirador purificador de ar com pressão positiva usado em refinarias de petróleo ou plantas de processamento de gás natural. 2. Para a Série B (Gases/Vapores Inorgânicos, por exemplo, Cloro, Dióxido de Enxofre): Adsorventes Químicos como Componente Principal​Componente principal: Carvão ativado impregnado + óxidos metálicos (por exemplo, sulfato de cobre, permanganato de potássio, hidróxido de cálcio).Princípio de funcionamento: A maioria dos gases inorgânicos é altamente oxidante ou irritante e precisa ser convertida em substâncias inofensivas por meio de "reações químicas". Por exemplo:O cloro (Cl₂) reage com o hidróxido de cálcio para formar cloreto de cálcio (um sólido inofensivo);O dióxido de enxofre (SO₂) é oxidado em sulfato (fixado no material do filtro após dissolução em água) pela reação com permanganato de potássio.Essa estabilidade química é essencial para respiradores purificadores de ar motorizados usados ​​em plantas de fabricação de produtos químicos, onde picos repentinos nas concentrações de gases inorgânicos exigem neutralização rápida e eficaz.​3. Para a Série E (gases/vapores ácidos, por exemplo, ácido clorídrico, fluoreto de hidrogênio): Neutralizadores alcalinos​Componente principal: Hidróxido de potássio (KOH), hidróxido de sódio (NaOH) ou carbonato de sódio (suportado em carvão ativado ou transportadores inertes).Princípio de funcionamento: Utiliza a "reação de neutralização ácido-base" para converter gases ácidos em sais (inofensivos e não voláteis). Por exemplo:O ácido clorídrico (HCl) reage com o hidróxido de potássio para formar cloreto de potássio (KCl) e água;O fluoreto de hidrogênio (HF) reage com o hidróxido de sódio para formar fluoreto de sódio (NaF, um sólido), impedindo que ele corroa o trato respiratório.Esta fórmula resistente à corrosão é essencial para respiradores purificadores de ar motorizados usados ​​em oficinas de 酸洗 (decapagem) ou na fabricação de semicondutores, onde vapores ácidos representam riscos à saúde e ao equipamento.​4. Para a Série K (gases/vapores de amônia e amina, por exemplo, amônia, metilamina): adsorventes ácidos​Componente principal: Carvão ativado impregnado com ácido fosfórico (H₃PO₄) ou sulfato de cálcio.Princípio de funcionamento: Amônia e aminas são gases alcalinos e são fixados por "neutralização ácido-base". Por exemplo:A amônia (NH₃) reage com o ácido fosfórico para formar fosfato de amônio ((NH₄)₃PO₄, um sólido);​A metilamina (CH₃NH₂) reage com o sulfato de cálcio para formar sais estáveis ​​que não volatilizam mais.Essa neutralização direcionada é essencial para respiradores purificadores de ar motorizados usados ​​em fábricas de fertilizantes ou instalações de armazenamento refrigerado, onde vazamentos de amônia são um risco comum.​III. "Lógica de Correspondência" entre Estrutura e Componentes: Por que os cartuchos de máscaras de gás não podem ser misturados?​Pode-se observar no conteúdo acima que a "estrutura em camadas" e a "seleção de componentes" dos cartuchos de máscaras de gás são totalmente projetadas em torno do "alvo de proteção" — um princípio que é ainda mais crítico quando combinado com respiradores purificadores de ar motorizados, pois esses dispositivos amplificam tanto a eficácia dos cartuchos corretos quanto os riscos dos incorretos:​Se um recipiente de máscara de gás Série A (carvão ativado) for usado para proteger contra gases ácidos Série E com respiradores purificadores de ar motorizados, os gases ácidos penetrarão diretamente no carvão ativado (nenhuma reação de neutralização ocorrerá) e o fluxo de ar contínuo do PAPR fornecerá esses gases não filtrados diretamente ao usuário;Se um recipiente de máscara de gás Série K (adsorvente ácido) for exposto ao cloro Série B (altamente oxidante) em respiradores purificadores de ar motorizados, podem ocorrer reações adversas e até mesmo substâncias tóxicas podem ser produzidas — substâncias que o PAPR fará circular na zona de respiração.Isso também ecoa a "regra de ouro da seleção" mencionada anteriormente: os cartuchos de máscara de gás da série correspondente devem ser selecionados de acordo com o tipo de gás no ambiente de trabalho para garantir que a estrutura e os componentes realmente desempenhem seu papel, especialmente quando integrados aos respiradores purificadores de ar motorizados.​Conclusão​Um cartucho para máscara de gás não é um "recipiente de material único", mas uma combinação sofisticada de "estrutura em camadas + componentes específicos" — projetada para funcionar em harmonia com Respiradores Purificadores de Ar Motorizados. O revestimento externo garante a vedação do fluxo de ar do PAPR, a camada de pré-processamento filtra as impurezas para manter a eficiência do PAPR e a camada central de adsorção/neutralização direciona com precisão os gases específicos para manter limpo o ar fornecido pelo PAPR. Em última análise, ele atinge o efeito protetor de "impedir a entrada de gases nocivos e permitir a saída de ar limpo". Compreender esses detalhes não apenas nos ajuda a selecionar cartuchos de máscaras de gás de forma mais científica para máscaras padrão, mas é ainda mais crítico para usuários de Respiradores Purificadores de Ar Motorizados, que contam com a sinergia cartucho-PAPR para uma proteção consistente e confiável. Também nos permite avaliar com mais clareza "quando substituir os cartuchos" durante o uso (por exemplo, o efeito de proteção cairá drasticamente após a saturação da camada de adsorção central), adicionando uma "linha de defesa de conscientização" para a segurança respiratória, especialmente para aqueles que dependem de Respiradores Purificadores de Ar Motorizados em ambientes de alto risco. Para saber mais, clique em www.newairsafety.com.
    LEIA MAIS

Deixe um recado

Deixe um recado
Se você estiver interessado em nossos produtos e quiser saber mais detalhes, deixe uma mensagem aqui e responderemos o mais breve possível.
Enviar
CONTATE-NOS: sales@txhyfh.com

Lar

Produtos

Whatsapp

Contate-nos